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Prop Logic: Wumpus World

* Model the Physics:
—breeze B,, => (Py,+; UP,,; UP,,; ,UP,,)
—stench S, , => (W, ,,; UW, ,UW,,, ,UW,,,)
— one wWumpus
at least one: W,, UW,,U... UW,,UW,,
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Problems?

* Physics about breezes and stenches for
every single square B, ;B,,B, ;...
* Prefer to have two sentences to say how
breezes arise In all squares; e.q.
" s Breezy(s) b $r Adjacent(r,s) U Pit(r)
" s @Breezy(s) b @%r Adjacent(r,s) U Pit(r)
or, " s Breezy(s) & $r Adjacent(r,s) U Pit(r)
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First-order logic

* \Whereas propositional logic assumes the
world contains facts,

* first-order logic (like natural language)
assumes the world contains

— Objects: people, houses, numbers, colors,
baseball games, wars, ...

— Relations: red, round, prime, father, bigger
than, part of, comes between, ...

— Functions: father of, best friend, one more
than, plus, ...
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Syntax of FOL: Basic elements

 Constants KingJohn, 2, NUS,...
* Predicates Brother, >,...

* Functions  Sqrt, LeftLegOf,...

* Variables x,vy, a, b,...
 Connectives @, b, U, U, U

* Equality =

« Quantifiers " ,$

Dr. Bassel ALKHATIB



Atomic sentences

Atomic sentence = predicate (termg,...,term,)
or term, = term,

Term function (termg,...,term,)

or constant or variable

- E.Q.
Brother(KingJohn,RichardTheLionheart)

>(Length(LeftLegOf(Richard)),
Length(LeftLegOf(KingJohn)))
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Complex sentences

« Complex sentences are made from atomic
sentences using connectives

@s, S, Us,,S,US,,S,b S,,S,U S,

E.g.
Sibling(KingJohn,Richard) p
Sibling(Richard,KingJohn)

>(1,2) U< (1,2)

>(1,2) U >(1,2)
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User provides

 Constant symbols, which represent individuals in the world
— Mary
-3
— Green

* Function symbols, which map individuals to individuals
— father-of(Mary) = John
— color-of(Sky) = Blue

* Predicate symbols, which map individuals to truth values
— greater(5,3)
— green(Grass)
— color(Grass, Green)



FOL Provides

* Variable symbols
— E.g., x,y, foo

e Connectives

— Same as in PL: not (@), and (U), or (U), implies
(® ), if and only if (biconditional « )

* Quantifiers
— Universal " x or (Ax)
— Existential $x or (Ex)



Sentences are bullt from terms and atoms
A term (denoting a real-world individual) is a constant symbol,
a variable symbol, or an n-place function of n terms.
x and f(x,, ..., X,,) are terms, where each x; is a term.
A term with no variables is a ground term

An atomic sentence (which has value true or false) is an n-
place predicate of n terms

A complex sentence Is formed from atomic sentences
connected by the logical connectives:

@P, PUQ, PUQ, P® Q, P« Q where P and Q are sentences
A guantified sentence adds quantifiers " and $

A well-formed formula (wff) is a sentence containing no “free”
variables. That is, all variables are “bound” by universal or
existential quantifiers.

(" X)P(x,y) has x bound as a universally quantified variable, but
y IS free.



A BNF for FOL

S .= <Sentence> ;

<Sent ence> : = <Atom cSent ence> |
<Sent ence> <Connective> <Sentence> |
<Quantifier> <Variable> ... <Sentence> |

"NOI" <Sentence> |
"(" <Sentence> ")";

<At om cSentence> := <Predicate> "(" <Termp, ... ")" |
<Terms "=" <Ternp,
<Term> := <Function> "(" <Termp, ... ")" |

<Const ant > |
<Vari abl e>;

<Connective> := "AND" | "OR" | "IMPLIES" | "EQU VALENT";
<Quantifier> := "EXISTS" | "FORALL" ;

<Constant> := "A" | "X1" | "John" | ... ;

<Variable> :="a" | "x" | "s" | ... ;

<Predicate> := "Before" | "HasColor" | "Raining" |

<Function> := "Modther" | "LeftLegO" | ... ;



Semantics of FOL

« Domain M: the set of all objects in the world (of interest)
* Interpretation I: includes

Assign each constant to an object in M
Define each function of n arguments as a mapping M" => M
Define each predicate of n arguments as a mapping M" => {T, F}

Therefore, every ground predicate with any instantiation will have a
truth value

In general there is an infinite number of interpretations because |M|
IS Infinite

 Define logical connectives: ~, ,v,=>,<=>asin PL
« Define semantics of (" x) and ($x)

(" x) P(x) is true iff P(x) is true under all interpretations
($x) P(x) is true iff P(x) is true under some interpretation



 Model: an Interpretation of a set of
sentences such that every sentence Is True

A sentence s
— satisfiable if it is true under some interpretation

— valid if it is true under all possible interpretations
— Inconsistent if there does not exist any interpretation under

which the sentence is true
* Logical consequence: S |= X If all models

of S are also models of X



Truth In first-order logic

Sentences are true with respect to a model and an interpretation

Model contains objects (domain elements) and relations among
them

Interpretation specifies referents for

constant symbols — objects
predicate symbols — relations
function symbols — functional relations

An atomic sentence predicate(termy,...,term.) is true
Iff the objects referred to by term,,...,term,
are in the relation referred to by predicate
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Truth In first-order logic

On(A,Fl) E Clear(B)

Clear(B) U Clear(C) E On(A,FI)
Clear(B) U Clear(A)

Clear(B)

Clear(C)



Truth In first-order logic

Floor Floor Floor
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Models for FOL: Example

Richard the Lionheart,
King of England, 1189 to 1199

brother




FOL Representation

Brother(Richard,John)
Married(FatherOf(Richard),MotherOf(John))
* @ Brother(LeftLegOf(Richard),John)

King(Richard) U King(John)

« @ King(Richard) b King(John)

« " X, King(x) P Person(x)

«  $ X, Crown(x) UOnHead(x,John)

Convention: variablesin lower case, everything elsein
UpperCase.
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Examples

* All crows are black.
" x Crow(x) => Black(x)

» Mary likes the color of one of John's ties

$ x Like(Mary, color(x)) UTie(x) U
Owner(x,John)
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Limitations of Prop Logic

« Cannot draw connections or refer to
Individuals
— P1: Paul is tall
— P2: Barbara iIs short

— P3: All tall people bang their heads in the
Tokyo subway station.

what can be inferred?
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FOL: Subway example

« Can draw connections and refer to
individuals:

P1: Tall(Paul).
P2: @ Tall(Barbara).

P3: " X, Tall(x) =>BangHead(x, TokyoSubway)

Ableto draw inference that Paul will bang his head on
the Tokyo Subway.
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Quantifiers

* Universal quantification

— (" X)P(x) means that P holds for all values of x in
the domain associated with that variable

— E.g., (" X) dolphin(x) ® mammal(x)

* Existential quantification

— ($ X)P(x) means that P holds for some value of x
In the domain associated with that variable

— E.g., ($ X) mammal(x) U lays-eggs(x)
— Permits one to make a statement about some
object without naming it



Quantifiers

Universal quantifiers are often used with “implies” to form “rules”:
(" X) student(x) ® smart(x) means “All students are smart”

Universal quantification is rarely used to make blanket statements about
every individual in the world:

(" x)student(x)Usmart(x) means “Everyone in the world is a student and
IS smart”

Existential quantifiers are usually used with “and” to specify a list of
properties about an individual:

($x) student(x) U smart(x) means “There is a student who is smart”

A common mistake is to represent this English sentence as the FOL
sentence:

($x) student(x) ® smart(x)
— But what happens when there is a person who is not a student?



Quantifier Scope

« Switching the order of universal quantifiers does not
change the meaning:

— (" X" Y)P(Xy) < (" y)(" X) P(x,y)
« Similarly, you can switch the order of existential
guantifiers:

— (3X)(FY)P(x.y) <« (By)(3x) P(x.y)
« Switching the order of universals and existentials does
change meaning:

— Everyone likes someone: (" X)($y) likes(x,y)
— Someone is liked by everyone: ($y)(" x) likes(x,y)



Connections between All and Exists

We can relate sentences involving " and
$ using De Morgan’s laws:

(" X) DP(X) <« D($x) P(xX)
A" X) P < ($x) OP(X)

(" X) P(X) < @ ($x) OP(X)
($x) P(X) < (" x) DP(x)



Universal guantification

e " <variables> <sentence>

Everyone at IT Iis smart:
" X At(x,IT) P Smart(x)

« " xPistruein amodel m iff P is true with x being each
possible object in the model

« Roughly speaking, equivalent to the conjunction of
Instantiations of P
At(Sami, IT) b Smart(Sami)
U At(John, IT) P Smart(John)
U
U...
Dr. Bassel ALKHATIB
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A common mistake to avoid

» Typically, P Is the main connective with "

» Common mistake: using U as the main
connective with " :

" x At(x,IT) U Smart(x) K

means “Everyone is at IT and everyone Is smart”

"X At(x,ITL) P Smart(x)
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Existential guantification

e $<variables> <sentence>

Someone at IT Is smaurt:
$x At(x,IT) U Smart(x)

« $x P is true in a model m iff P is true with x being some
possible object in the model

* Roughly speaking, equivalent to the disjunction of
Instantiations of P
At(Sami,IT) U Smart(Sami)
U At(John,IT) U Smart(John)
U...
U...
Dr. Bassel ALKHATIB
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Another common mistake to
avoid

» Typically, Uis the main connective with $

« Common mistake: using P as the main
connective with $:

$x Atx,IT) b Smart(x) X
IS true If there Is anyone who is not at IT!

$x At(x,1T) U Smart(x)

Dr. Bassel ALKHATIB
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Equality

* term, = term, is true under a given interpretation

If and only if term, and term, refer to the same
object

« E.g., definition of Sibling in terms of Parent:

" x,y Sibling(x,y) U [@(x=y) U $m,f@(m =1) U
Parent(m,x) U Parent(f,x) U Parent(m,y) U Parent(f,y)]
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Translating English to FOL

« Every gardener likes the sun.
(" x) gardener(x) P likes(x, Sun)

* You can fool some of the people all of the time.
($ x)(" t) (person(x) N tinme(t)) P can-fool (x,t)

* You can fool all of the people some of the time.
(" xX)($t) (person(x) N tinme(t) P can-fool (x,t)

 All purple mushrooms are poisonous.
(" x) (mushroon(x) " purple(x)) P poisonous(x)
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Translating English to FOL...

No purple mushroom is poisonous.

AP x) purple(x) ™ mushroon(x) ” poisonous(x)
or, equivalently,

(" x) (mushroom(x) ”~ purple(x)) P ~poisonous(x)

There are exactly two purple mushrooms.
($ x)($ y) mushroom(x) ™ purple(x) ~ mushroom(y) ”~ purple(y) " @(x:y)
A (" z) (nushroonm(z) ~ purple(z)) P ((x=z) v (y=2))

Deb is not tall.
@ tall (Deb)

X is above Y if X is on directly on top of Y or else there is a pile of
one or more other objects directly on top of one another starting
with X and ending with Y.

(" x)(" y) above(x,y) <=> (on(x,y) v ($ z) (on(x,z) »
above(z,y)))
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Using FOL

The kinship domain:

* Brothers are siblings

* One's mother is one's female parent
" 'm,c Mother(c,m) U (Female(m) U Parent(c,m))

« “Sibling” Is symmetric
" x,y Sibling(x,y) U Sibling(y,x)

Dr. Bassel ALKHATIB
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Using FOL

All packets in room 27 are smaller than any
packets in room 28

(" x,y) {[Package(x) UPackage(y) Uinroom(x,27) Unroom(y,28] ESmaller(x,y)}

Dr. Bassel ALKHATIB
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Using FOL

All packets in room 27 are smaller than some
packet in room 28

Dr. Bassel ALKHATIB
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Using FOL

($ y)(" x) {[Package(x) UPackage(y) Unroom(x,27) Uinroom(y,29] ESmaller(x,y)}
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Using FOL

(" x)( $y) {[Package(x) UPackage(y) Uinroom(x,27) Uinroom(y,29] ESmaller(x,y)}
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Example: A simple genealogy KB by FOL

Build a small genealogy knowledge base using FOL that

— contains facts of immediate family relations (spouses, parents,
etc.)

— contains definitions of more complex relations (ancestors,
relatives)

— Is able to answer queries about relationships between people
Predicates:

— parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
— spouse(X, y), husband(x, y), wife(x,y)

— ancestor(x, y), descendant(x, y)

— male(x), female(y)

— relative(x, y)

Facts:

— husband(Joe, Mary), son(Fred, Joe)

— spouse(John, Nancy), male(John), son(Mark, Nancy)
— father(Jack, Nancy), daughter(Linda, Jack)

— daughter(Liz, Linda)

— efc.



* Rules for genealogical relations

— (" x,y) parent(x, y) <> child (y, x)

(" x,y) father(x, y) «< parent(x, y) U male(x) (similarly for mother(x, y))

' x,y) daughter(x, y) < child(x, y) Ufemale(x) (similarly for son(x, y))
x,y) husband(x, y) < spouse(x, y) U male(x) (similarly for wife(x, y))
X,y) spouse(X, y) «> spouse(y, X) (spouse relation is symmetric)
X,y) parent(x, y) ® ancestor(x, y)
X,¥)($2) parent(x, z) U ancestor(z, y) ® ancestor(x, y)
X,y) descendant(x, y) <« ancestor(y, Xx)
X,¥)($2) ancestor(z, x) U ancestor(z, y) ® relative(x, V)

(related by common ancestry)
(" X,y) spouse(x, y) ® relative(x, y) (related by marriage)
(" x,y)($2) relative(z, x) Urelative(z, y) ® relative(x, y) (transitive)
(" x,y) relative(x, y) < relative(y, X) (symmetric)

I
AN AN A M

 Queries
— ancestor(Jack, Fred) /*the answer is yes */
— relative(Liz, Joe) [* the answer is yes */

— relative(Nancy, Matthew)
[* no answer in general, no if under closed world assumption */

— ($2) ancestor(z, Fred) U ancestor(z, LiZ)



1.

Axioms for Set Theory in FOL

The only sets are the empty set and those made by adjoining something to
a set:

" s set(s) <=> (s=EmptySet) v ($x,r Set(r) * s=Adjoin(s,r))

. The empty set has no elements adjoined to it:

~ $x,s Adjoin(x,s)=EmptySet

. Adjoining an element already in the set has no effect:

" X,s Member(x,s) <=> s=Adjoin(x,s)

. The only members of a set are the elements that were adjoined into it:

" x,8 Member(x,s) <=> $y,r (s=Adjoin(y,r) * (x=y U Member(x,r)))

. A set is a subset of another iff all of the 1st set’s members are members of

the 2nd:;
" s,r Subset(s,r) <=> (" x Member(x,s) => Member(x,r))

. Two sets are equal iff each is a subset of the other:

" s,r (s=r) <=> (subset(s,r) * subset(r,s))

. Intersection

" X,51,52 member(X,intersection(S1,S2)) <=> member(X,s1) * member(X,s2)

. Union

$x,s1,s2 member(X,union(sl1,s2)) <=> member(X,s1) U member(X,s2)



/.

Dr.

Knowledge engineering in FOL

|dentify the task
Assemble the relevant knowledge

Decide on a vocabulary of predicates,
functions, and constants

Encode general knowledge about the domain

Encode a description of the specific problem
Instance

Pose queries to the inference procedure and
get answers

Debug the knowledge base

Bassel ALKHATIB
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The electronic circuits domain

One-bit full adder

3@

C1

Dr. Bassel ALKHATIB
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The electronic circuits domain

1. ldentify the task

— Does the circuit actually add properly? (circuit
verification)

2. Assemble the relevant knowledge

— Composed of wires and gates; Types of gates (AND,
OR, XOR, NOT)

— lrrelevant: size, shape, color, cost of gates
3. Decide on a vocabulary

— Alternatives:
Type(X,) = XOR
Type(X;, XOR)
XOR(X,)
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The electronic circuits domain

4. Encode general knowledge of the domain
- " t,,t, Connected(t,, t,) P Signal(t,) = Signal(t,)
— " tSignal(t) = 1 U Signal(t) = 0
— 1#0
— " 1t3,t, Connected(t,, t,) P Connected(t,, t,)

— " gType(g) = OR b Signal(Out(1,g))=1U $n
Signal(ln(n,g)) = 1

— " gType(g) = AND b Signal(Out(1,9)) =0 U $n
Signal(In(n,g)) =0

— " g Type(g) = XOR b Signal(Out(1,9)) =1 U
Signal(In(1,g)) # Signal(In(2,9))

— " g Type(g) = NOT b Signal(Out(1,9)) #
Signal(In(1,9))

Dr. Bassel ALKHATIB
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The electronic circuits domain

5. Encode the specific problem instance
Type(X;) = XOR Type(X,) = XOR
Type(A,) = AND Type(A,) = AND

Type(O;) = OR

Connected(Out(1,X,),In(1,X5))
Connected(Out(1,X,),In(2,A,))
Connected(Out(1,A,),In(1,0,))
Connected(Out(1,A,),In(2,0,))
Connected(Out(1,X,),0ut(1,C,))
Connected(Out(1,0,),0ut(2,C,))
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Connected(In(1,C,),In(1,X,))
Connected(In(1,C,),In(1,A)))
Connected(In(2,C,),In(2,X,))
Connected(In(2,C,),In(2,A,))
Connected(In(3,C,),In(2,X,))
Connected(In(3,C,),In(1,A,))
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The electronic circuits domain

6. Pose queries to the inference procedure

What are the possible sets of values of all the
terminals for the adder circuit?

$iy,is,i3,04,0, Signal(In(1,C1)) =i U Signal(In(2, Cl)) =1,
U Signal(In(3,C,)) =i, U Signal(Out(1,C,)) = o, U
Signal(Out(2,C,)) = o,

/. Debug the knowledge base
May have omitted assertions like 1 # 0
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Summary

 First-order logic:
— objects and relations are semantic primitives

— syntax: constants, functions, predicates,
equality, quantifiers

* Increased expressive power: sufficient to
define wumpus world
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