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First-Order Logic



Dr. Bassel ALKHATIB 2

Outline

• Why FOL?
• Syntax and semantics of FOL
• Using FOL
• Wumpus world in FOL
• Knowledge engineering in FOL
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Prop Logic: Wumpus World

• Model the Physics:
– breeze  Bx,y => (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)
– stench Sx,y => (Wx,y+1 ∨ Wx,y-1∨ Wx+1,y ∨ Wx-1,y)
– one wumpus 

at least one: W1,1 ∨ W1,2 ∨ … ∨ W4,3 ∨ W4,4
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Problems?

• Physics about breezes and stenches for 
every single square B1,1 B1,2 B2,1…

• Prefer to have two sentences to say how 
breezes arise in all squares; e.g.
∀s Breezy(s) ⇒ ∃r Adjacent(r,s) ∧ Pit(r)
∀s ¬Breezy(s) ⇒ ¬∃r Adjacent(r,s) ∧ Pit(r)
or, ∀s Breezy(s) ó ∃r Adjacent(r,s) ∧ Pit(r)
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First-order logic

• Whereas propositional logic assumes the 
world contains facts,

• first-order logic (like natural language) 
assumes the world contains
– Objects: people, houses, numbers, colors, 

baseball games, wars, …
– Relations: red, round, prime, father, bigger 

than, part of, comes between, …
– Functions: father of, best friend, one more 

than, plus, …
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Syntax of FOL: Basic elements

• Constants KingJohn, 2, NUS,... 
• Predicates Brother, >,...
• Functions Sqrt, LeftLegOf,...
• Variables x, y, a, b,...
• Connectives ¬, ⇒, ∧, ∨, ⇔
• Equality = 
• Quantifiers ∀, ∃
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Atomic sentences

Atomic sentence = predicate (term1,...,termn) 
or term1 = term2

Term            = function (term1,...,termn) 
or constant or variable

• E.g.
Brother(KingJohn,RichardTheLionheart) 

>(Length(LeftLegOf(Richard)),
Length(LeftLegOf(KingJohn)))
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Complex sentences
• Complex sentences are made from atomic 

sentences using connectives
¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2,

E.g. 
Sibling(KingJohn,Richard) ⇒

Sibling(Richard,KingJohn)

>(1,2) ∨ ≤ (1,2)

>(1,2) ∧ ¬ >(1,2) 



User provides
• Constant symbols, which represent individuals in the world

– Mary
– 3
– Green

• Function symbols, which map individuals to individuals
– father-of(Mary) = John
– color-of(Sky) = Blue 

• Predicate symbols, which map individuals to truth values
– greater(5,3)
– green(Grass) 
– color(Grass, Green) 



FOL Provides

• Variable symbols
– E.g., x, y, foo

• Connectives
– Same as in PL: not (¬), and (∧), or (∨), implies 

(→), if and only if (biconditional ↔)

• Quantifiers
– Universal ∀x or  (Ax)
– Existential ∃x or (Ex)



Sentences are built from terms and atoms
• A term (denoting a real-world individual) is a constant symbol, 

a variable symbol, or an n-place function of n terms. 
x and f(x1, ..., xn) are terms, where each xi is a term. 
A term with no variables is a ground term

• An atomic sentence (which has value true or false) is an n-
place predicate of n terms

• A complex sentence is formed from atomic sentences 
connected by the logical connectives:
¬P, P∨Q, P∧Q, P→Q, P↔Q where P and Q are sentences

• A quantified sentence adds quantifiers ∀ and ∃
• A well-formed formula (wff) is a sentence containing no “free” 

variables. That is, all variables are “bound” by universal or 
existential quantifiers. 
(∀x)P(x,y) has x bound as a universally quantified variable, but 

y is free. 



A BNF for FOL
S := <Sentence> ;
<Sentence> := <AtomicSentence> | 

<Sentence> <Connective> <Sentence> |
<Quantifier> <Variable>,... <Sentence> |
"NOT" <Sentence> |
"(" <Sentence> ")"; 

<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
<Term> "=" <Term>;

<Term> := <Function> "(" <Term>, ... ")" |
<Constant> |
<Variable>;

<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ; 
<Function> := "Mother" | "LeftLegOf" | ... ;



Semantics of FOL
• Domain M: the set of all objects in the world (of interest)
• Interpretation I: includes

– Assign each constant to an object in M
– Define each function of n arguments as a mapping Mn => M
– Define each predicate of n arguments as a mapping Mn => {T, F}
– Therefore, every ground predicate with any instantiation will have a 

truth value
– In general there is an infinite number of interpretations because |M| 

is infinite
• Define logical connectives:  ~, ^, v, =>, <=> as in PL
• Define semantics of (∀x) and (∃x)

– (∀x) P(x) is true iff P(x) is true under all interpretations 
– (∃x) P(x) is true iff P(x) is true under some interpretation 



• Model: an interpretation of a set of 
sentences such that every sentence is True

• A sentence is
– satisfiable if it is true under some interpretation
– valid if it is true under all possible interpretations
– inconsistent if there does not exist any interpretation under 

which the sentence is true

• Logical consequence: S |= X if all models 
of S are also models of X
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Truth in first-order logic

• Sentences are true with respect to a model and an interpretation

• Model contains objects (domain elements) and relations among 
them

• Interpretation specifies referents for
constant symbols → objects

predicate symbols → relations

function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate
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Truth in first-order logic

On(A,Fl) ⊃ Clear(B)
Clear(B) ∧ Clear(C) ⊃ On(A,Fl)
Clear(B) ∨ Clear(A)
Clear(B)
Clear(C)
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Truth in first-order logic

A C A BAِ Bِ Cِ

Floor Floor Floor

حالات عالم الكتل

CB
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Models for FOL: Example

Richard the Lionheart,
King of England, 1189 to 1199

Evil King John,
King of England, 
1199 to 1215
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FOL Representation

• Brother(Richard,John)
• Married(FatherOf(Richard),MotherOf(John))
• ¬ Brother(LeftLegOf(Richard),John)
• Brother(Richard,John) ∧ Brother(John,Richard)
• King(Richard) ∨ King(John)
• ¬ King(Richard) ⇒ King(John)
• ∀ x, King(x) ⇒ Person(x)
• ∃ x, Crown(x) ∧ OnHead(x,John)
Convention: variables in lower case, everything else in 
UpperCase. 
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Examples

• All crows are black.

∀ x Crow(x) => Black(x)

• Mary likes the color of one of John’s ties

∃ x Like(Mary, color(x)) ∧ Tie(x) ∧
Owner(x,John)
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Limitations of Prop Logic

• Cannot draw connections or refer to 
individuals
– P1: Paul is tall
– P2: Barbara is short
– P3: All tall people bang their heads in the 

Tokyo subway station.

what can be inferred?
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FOL: Subway example

• Can draw connections and refer to 
individuals:
– P1: Tall(Paul).
– P2: ¬ Tall(Barbara).
– P3: ∀ x, Tall(x) =>BangHead(x,TokyoSubway)

Able to draw inference that Paul will bang his head on
the Tokyo Subway. 



Quantifiers

• Universal quantification
– (∀x)P(x) means that P holds for all values of x in 

the domain associated with that variable
– E.g., (∀x) dolphin(x) → mammal(x)

• Existential quantification
– (∃ x)P(x) means that P holds for some value of x 

in the domain associated with that variable
– E.g., (∃ x) mammal(x) ∧ lays-eggs(x)
– Permits one to make a statement about some 

object without naming it



Quantifiers
• Universal quantifiers are often used with “implies” to form “rules”:

(∀x) student(x) → smart(x) means “All students are smart”
• Universal quantification is rarely used to make blanket statements about 

every individual in the world: 
(∀x)student(x)∧smart(x) means “Everyone in the world is a student and 

is smart”
• Existential quantifiers are usually used with “and” to specify a list of 

properties about an individual:
(∃x) student(x) ∧ smart(x) means “There is a student who is smart”

• A common mistake is to represent this English sentence as the FOL 
sentence:
(∃x) student(x) → smart(x) 
– But what happens when there is a person who is not a student?



Quantifier Scope

• Switching the order of universal quantifiers does not
change the meaning: 
– (∀x)(∀y)P(x,y) ↔ (∀y)(∀x) P(x,y)

• Similarly, you can switch the order of existential 
quantifiers:
– (∃x)(∃y)P(x,y) ↔ (∃y)(∃x) P(x,y) 

• Switching the order of universals and existentials does
change meaning: 
– Everyone likes someone: (∀x)(∃y) likes(x,y) 
– Someone is liked by everyone: (∃y)(∀x) likes(x,y)



Connections between All and Exists

We can relate sentences involving ∀ and 
∃ using De Morgan’s laws:

(∀x) ¬P(x) ↔ ¬(∃x) P(x)
¬(∀x) P ↔ (∃x) ¬P(x)
(∀x) P(x) ↔ ¬ (∃x) ¬P(x)
(∃x) P(x) ↔ ¬(∀x) ¬P(x)
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Universal quantification

• ∀<variables> <sentence>

Everyone at IT is smart:
∀x At(x,IT) ⇒ Smart(x)

• ∀x P is true in a model m iff P is true with x being each 
possible object in the model

• Roughly speaking, equivalent to the conjunction of 
instantiations of P

At(Sami , IT) ⇒ Smart(Sami) 
∧ At(John , IT) ⇒ Smart(John) 
∧ . . . 
∧ ...
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A common mistake to avoid

• Typically, ⇒ is the main connective with ∀
• Common mistake: using ∧ as the main 

connective with ∀:

∀x At(x,IT) ∧ Smart(x)
means “Everyone is at IT and everyone is smart”

∀x At(x,ITL) ⇒ Smart(x)
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Existential quantification

• ∃<variables> <sentence>

Someone at IT is smart:
∃x At(x,IT) ∧ Smart(x)

• ∃x P is true in a model m iff P is true with x being some 
possible object in the model

• Roughly speaking, equivalent to the disjunction of 
instantiations of P

At(Sami,IT) ∧ Smart(Sami) 
∨ At(John,IT) ∧ Smart(John) 
∨ . . . 
∨ ...
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Another common mistake to 
avoid

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main 
connective with ∃:

∃x At(x,IT) ⇒ Smart(x)

is true if there is anyone who is not at IT!

∃x At(x,IT) ∧ Smart(x)
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Equality

• term1 = term2 is true under a given interpretation 
if and only if term1 and term2 refer to the same 
object

• E.g., definition of Sibling in terms of Parent:
∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧

Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧ Parent(f,y)]
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Translating English to FOL
• Every gardener likes the sun.

(∀ x) gardener(x) ⇒ likes(x,Sun)

• You can fool some of the people all of the time.
(∃ x)(∀ t) (person(x) ^ time(t)) ⇒ can-fool(x,t)

• You can fool all of the people some of the time.
(∀ x)(∃ t) (person(x) ^ time(t) ⇒ can-fool(x,t)

• All purple mushrooms are poisonous.
(∀ x) (mushroom(x) ^ purple(x)) ⇒ poisonous(x)
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Translating English to FOL…
• No purple mushroom is poisonous.

¬(∃ x) purple(x) ^ mushroom(x) ^ poisonous(x) 
or, equivalently,
(∀ x) (mushroom(x) ^ purple(x)) ⇒ ~poisonous(x) 

• There are exactly two purple mushrooms.
(∃ x)(∃ y) mushroom(x) ^ purple(x) ^ mushroom(y) ^ purple(y) ^ ¬(x=y) 
^ (∀ z) (mushroom(z) ^ purple(z)) ⇒ ((x=z) v (y=z))

• Deb is not tall.
¬ tall(Deb) 

• X is above Y if X is on directly on top of Y or else there is a pile of 
one or more other objects directly on top of one another starting 
with X and ending with Y.
(∀ x)(∀ y) above(x,y) <=> (on(x,y) v (∃ z) (on(x,z) ^ 
above(z,y)))
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Using FOL
The kinship domain:

• Brothers are siblings
∀x,y Brother(x,y) ⇔ Sibling(x,y)

• One's mother is one's female parent
∀m,c Mother(c,m) ⇔ (Female(m) ∧ Parent(c,m))

• “Sibling” is symmetric
∀x,y Sibling(x,y) ⇔ Sibling(y,x)
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Using FOL

All packets in room 27 are smaller than any 
packets in room 28

(∀ x,y) {[Package(x) ∧Package(y) ∧Inroom(x,27) ∧Inroom(y,28] ⊃Smaller(x,y)}
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Using FOL

All packets in room 27 are smaller than some 
packet in room 28
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Using FOL

(∃ y)(∀x) {[Package(x) ∧Package(y) ∧Inroom(x,27) ∧Inroom(y,29] ⊃Smaller(x,y)}
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Using FOL

(∀ x)( ∃y) {[Package(x) ∧Package(y) ∧Inroom(x,27) ∧Inroom(y,29] ⊃Smaller(x,y)}



Example: A simple genealogy KB by FOL
• Build a small genealogy knowledge base using FOL that

– contains facts of immediate family relations (spouses, parents, 
etc.)

– contains definitions of more complex relations (ancestors, 
relatives)

– is able to answer queries about relationships between people
• Predicates:

– parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
– spouse(x, y), husband(x, y), wife(x,y)
– ancestor(x, y), descendant(x, y)
– male(x), female(y)
– relative(x, y)

• Facts:
– husband(Joe, Mary), son(Fred, Joe)
– spouse(John, Nancy), male(John), son(Mark, Nancy)
– father(Jack, Nancy), daughter(Linda, Jack)
– daughter(Liz, Linda)
– etc.



• Rules for genealogical relations
– (∀x,y) parent(x, y) ↔ child (y, x)

(∀x,y) father(x, y) ↔ parent(x, y) ∧ male(x) (similarly for mother(x, y))
(∀x,y) daughter(x, y) ↔ child(x, y) ∧ female(x) (similarly for son(x, y))

– (∀x,y) husband(x, y) ↔ spouse(x, y) ∧ male(x) (similarly for wife(x, y))
(∀x,y) spouse(x, y) ↔ spouse(y, x)  (spouse relation is symmetric)

– (∀x,y) parent(x, y) → ancestor(x, y) 
(∀x,y)(∃z) parent(x, z) ∧ ancestor(z, y) → ancestor(x, y) 

– (∀x,y) descendant(x, y) ↔ ancestor(y, x) 
– (∀x,y)(∃z) ancestor(z, x) ∧ ancestor(z, y) → relative(x, y) 

(related by common ancestry)
(∀x,y) spouse(x, y) → relative(x, y) (related by marriage)
(∀x,y)(∃z) relative(z, x) ∧ relative(z, y) → relative(x, y) (transitive)
(∀x,y) relative(x, y) ↔ relative(y, x) (symmetric)

• Queries
– ancestor(Jack, Fred)   /* the answer is yes */
– relative(Liz, Joe)        /* the answer is yes */
– relative(Nancy,  Matthew)   

/* no answer in general, no if under closed world assumption */
– (∃z) ancestor(z, Fred) ∧ ancestor(z, Liz)



Axioms for Set Theory in FOL
1. The only sets are the empty set and those made by adjoining something to 

a set: 
∀s set(s) <=> (s=EmptySet) v (∃x,r Set(r) ^ s=Adjoin(s,r))

2. The empty set has no elements adjoined to it: 
~ ∃x,s Adjoin(x,s)=EmptySet

3. Adjoining an element already in the set has no effect: 
∀x,s Member(x,s) <=> s=Adjoin(x,s)

4. The only members of a set are the elements that were adjoined into it: 
∀x,s Member(x,s) <=>  ∃y,r (s=Adjoin(y,r) ^ (x=y ∨ Member(x,r)))

5. A set is a subset of another iff all of the 1st set ’s members are members of 
the 2nd:

∀s,r Subset(s,r) <=> (∀x Member(x,s) => Member(x,r))
6. Two sets are equal iff each is a subset of the other: 

∀s,r (s=r) <=> (subset(s,r) ^ subset(r,s))
7. Intersection 

∀x,s1,s2 member(X,intersection(S1,S2)) <=> member(X,s1) ^ member(X,s2)
8. Union 

∃x,s1,s2 member(X,union(s1,s2)) <=> member(X,s1) ∨ member(X,s2)
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Knowledge engineering in FOL
1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, 

functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem 

instance
6. Pose queries to the inference procedure and 

get answers
7. Debug the knowledge base
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The electronic circuits domain

One-bit full adder
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The electronic circuits domain
1. Identify the task

– Does the circuit actually add properly? (circuit 
verification)

2. Assemble the relevant knowledge
– Composed of wires and gates; Types of gates (AND, 

OR, XOR, NOT)
– Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
– Alternatives:

Type(X1) = XOR
Type(X1, XOR)
XOR(X1)
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The electronic circuits domain
4. Encode general knowledge of the domain

– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)
– ∀t Signal(t) = 1 ∨ Signal(t) = 0
– 1 ≠ 0
– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)
– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n 

Signal(In(n,g)) = 1
– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n 

Signal(In(n,g)) = 0
– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔

Signal(In(1,g)) ≠ Signal(In(2,g))
– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠

Signal(In(1,g))
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The electronic circuits domain
5. Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))
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The electronic circuits domain

6. Pose queries to the inference procedure
What are the possible sets of values of all the 

terminals for the adder circuit? 
∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2
∧ Signal(In(3,C1)) = i3 ∧ Signal(Out(1,C1)) = o1 ∧
Signal(Out(2,C1)) = o2

7. Debug the knowledge base
May have omitted assertions like 1 ≠ 0
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Summary

• First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, 

equality, quantifiers

• Increased expressive power: sufficient to 
define wumpus world 


