
Software Engineering: A Practitioner’s Approach, 6/e

Process and Project Metrics

1

A Good Manager Measures
2

measurement

What do we
use as a
basis?
• size?
• function?

project metrics

process metrics
process

product

product metrics

Why Do We Measure?
3

 assess the status of an ongoing project

 track potential risks

 uncover problem areas before they go “critical,”

 adjust work flow or tasks,

 evaluate the project team’s ability to control

quality of software work products.

Process Measurement
4

 We measure the efficacy of a software process indirectly.

 That is, we derive a set of metrics based on the outcomes that can be
derived from the process.

 Outcomes include

 measures of errors uncovered before release of the software

 defects delivered to and reported by end-users

 work products delivered (productivity)

 human effort expended

 calendar time expended

 schedule conformance

 other measures.

 We also derive process metrics by measuring the characteristics of specific
software engineering tasks.

Process Metrics Guidelines
5

 Use common sense and organizational sensitivity when interpreting metrics
data.

 Provide regular feedback to the individuals and teams who collect
measures and metrics.

 Don’t use metrics to appraise individuals.

 Work with practitioners and teams to set clear goals and metrics that will
be used to achieve them.

 Never use metrics to threaten individuals or teams.

 Metrics data that indicate a problem area should not be considered
“negative.” These data are merely an indicator for process improvement.

 Don’t obsess on a single metric to the exclusion of other important metrics.

Software Process Improvement
6

SPI

Process model

Improvement goals

Process metrics

Process improvement
recommendations

Process Metrics
7

 Quality-related

 focus on quality of work products and deliverables

 Productivity-related

 Production of work-products related to effort expended

 Statistical SQA data

 error categorization & analysis

 Defect removal efficiency

 propagation of errors from process activity to activity

 Reuse data

 The number of components produced and their degree of
reusability

Project Metrics
8

 used to minimize the development schedule by making the adjustments

necessary to avoid delays and mitigate potential problems and risks

 used to assess product quality on an ongoing basis and, when necessary,

modify the technical approach to improve quality.

 every project should measure:

 inputs—measures of the resources (e.g., people, tools) required to do the

work.

 outputs—measures of the deliverables or work products created during

the software engineering process.

 results—measures that indicate the effectiveness of the deliverables.

Typical Project Metrics
9

 Effort/time per software engineering task

 Errors uncovered per review hour

 Scheduled vs. actual milestone dates

 Changes (number) and their characteristics

 Distribution of effort on software engineering

tasks

Metrics Guidelines
10

 Use common sense and organizational sensitivity when

interpreting metrics data.

 Provide regular feedback to the individuals and teams who have

worked to collect measures and metrics.

 Don’t use metrics to appraise individuals.

 Work with practitioners and teams to set clear goals and metrics

that will be used to achieve them.

 Never use metrics to threaten individuals or teams.

 Metrics data that indicate a problem area should not be

considered “negative.” These data are merely an indicator for

process improvement.

 Don’t obsess on a single metric to the exclusion of other important

metrics.

Typical Size-Oriented Metrics
11

 errors per KLOC (thousand lines of code)

 defects per KLOC

 $ per LOC

 pages of documentation per KLOC

 errors per person-month

 Errors per review hour

 LOC per person-month

 $ per page of documentation

Typical Function-Oriented Metrics
12

 errors per FP (thousand lines of
code)

 defects per FP

 $ per FP

 pages of documentation per FP

 FP per person-month

Comparing LOC and FP
13

Programming LOC per Function point

Language avg. median low high

Ada 154 - 104 205

Assembler 337 315 91 694

C 162 109 33 704
C++ 66 53 29 178

COBOL 77 77 14 400
Java 63 53 77 -

JavaScript 58 63 42 75

Perl 60 - - -

PL/1 78 67 22 263
Powerbuilder 32 31 11 105

SAS 40 41 33 49

Smalltalk 26 19 10 55
SQL 40 37 7 110

Visual Basic 47 42 16 158

Representative values developed by QSM

Why FP?
14

 Programming language independent

 Used readily countable characteristics that are

determined early in the software process

 Does not “penalize” inventive (short)

implementations that use fewer LOC that other more

clumsy versions

 Makes it easier to measure the impact of reusable

components

Object-Oriented Metrics
15

 Number of scenario scripts (use-cases)

 Number of support classes (required to implement the

system but are not immediately related to the

problem domain)

 Average number of support classes per key class

(analysis class)

 Number of subsystems (an aggregation of classes

that support a function that is visible to the end-user

of a system)

WebE Project Metrics
16

 Number of static Web pages (the end-user has no control over the content

displayed on the page)

 Number of dynamic Web pages (end-user actions result in customized

content displayed on the page)

 Number of internal page links (internal page links are pointers that provide

a hyperlink to some other Web page within the WebApp)

 Number of persistent data objects

 Number of external systems interfaced

 Number of static content objects

 Number of dynamic content objects

 Number of executable functions

Measuring Quality
17

 Correctness — the degree to which a program

operates according to specification

 Maintainability—the degree to which a program is

amenable to change

 Integrity—the degree to which a program is

impervious to outside attack

 Usability—the degree to which a program is easy

to use

Defect Removal Efficiency
18

DRE = E /(E + D)

E is the number of errors found before delivery of

the software to the end-user

D is the number of defects found after delivery.

Metrics for Small Organizations
19

 time (hours or days) elapsed from the time a request is made

until evaluation is complete, tqueue.

 effort (person-hours) to perform the evaluation, Weval.

 time (hours or days) elapsed from completion of evaluation to

assignment of change order to personnel, teval.

 effort (person-hours) required to make the change, Wchange.

 time required (hours or days) to make the change, tchange.

 errors uncovered during work to make change, Echange.

 defects uncovered after change is released to the customer

base, Dchange.

Establishing a Metrics Program
20

 Identify your business goals.

 Identify what you want to know or learn.

 Identify your subgoals.

 Identify the entities and attributes related to your subgoals.

 Formalize your measurement goals.

 Identify quantifiable questions and the related indicators that you
will use to help you achieve your measurement goals.

 Identify the data elements that you will collect to construct the
indicators that help answer your questions.

 Define the measures to be used, and make these definitions
operational.

 Identify the actions that you will take to implement the measures.

 Prepare a plan for implementing the measures.

21

